圆与直线的位置关系判断

圆与直线的位置关系判断

链接:圆与直线的位置关系(一.5)  平面内,直线Ax+By+C=O与圆x^2+y^2+Dx+Ey+F=0的位置关系判断一般方法是  讨论如下2种情况:(1)由Ax+By+C=O可得y=(-C-Ax)/B,[其中B不等于0],  代入x^2+y^2+Dx+Ey+F=0,即成为一个关于x的一元二次方程f(x)=0.  利用判别式b^2-4ac的符号可确定圆与直线的位置关系如下:  如果b^2-4ac0,则圆与直线有2交点,即圆与直线相交  如果b^2-4ac=0,则圆与直线有1交点,即圆与直线相切  如果b^2-4ac0,则圆与直线有0交点,即圆与直线相离(2)如果B=0即直线为Ax+C=0,即x=-C/A.它平行于y轴(或垂直于x轴)  将x^2+y^2+Dx+Ey+F=0化为(x-a)^2+(y-b)^2=r^2  令y=b,求出此时的两个x值x1,x2,并且我们规定x1x2  当x=-C/Ax1或x=-C/Ax2时,直线与圆相离  当x1x=-C/Ax2时,直线与圆相交  当x=-C/A=x1或x=-C/A=x2时,直线与圆相切。